Elite Dangerous: Impressions of Deep Space Rendering

I am a backer of the upcoming Elite Dangerous game and have participated in their premium beta programme from the beginning, positively enjoying what was there at the early time. ‘Premium beta’ sounds like an oxymoron, paying a premium for an unfinished game, but it is nothing more than purchasing the same backer status as that from the Kickstarter campaign.

I came into contact with the original Elite during christmas in 1985. Compared with the progress I made back then in just two days, my recent performance in ED is lousy; I think my combat rating now would be ‘competent‘.

But this will not be a gameplay review, instead I’m going to share thoughts that were inspired while playing ED, mostly about graphics and shading, things like dynamic range, surface materials, phase curves, ‘real’ photometry, and so on; so … after I loaded the game and jumped through hyperspace for the first time (actually the second time), I was greeted by this screen filling disk of hot plasma:


Continue reading

Journey into the Zone (Plates)

I have experimented recently with zone plates, which are the 2-D equivalent of a chirp. Zone plates make for excellent test images to detect deficiencies in image processing algorithms or display and camera calibration. They have interesting properties: Each point on a zone plate corresponds to a unique instantaneous wave vector, and also like a gaussian a zone plate is its own Fourier transform. A quick image search (google, bing) turns up many results, but I found all of them more or less unusable, so I made my own.

Zone Plates Done Right

I made the following two 256×256 zone plates, which I am releasing into the public so they can be used by anyone freely. Continue reading

Yes, sRGB is like µ-law encoding

I vaguely remember someone making a comment in a discussion about sRGB, that ran along the lines of

So then, is sRGB like µ-law encoding?

This comment was not about the color space itself but about the specific pixel formats nowadays branded as ‘sRGB’. In this case, the answer should be yes. And while the technical details are not exactly the same, that analogy with the µ-law very much nails it.

When you think of sRGB pixel formats as nothing but a special encoding, it becomes clear that using such a format does not make you automatically “very picky of color reproduction”. This assumption was used by hardware vendors to rationalize the decision to limit the support of sRGB pixel formats to 8-bit precision, because people “would never want” to have sRGB support for anything less. Not true!Screen Shot 2014-03-06 at 19.02.54I’m going to make a case for this later. But first things first.

Continue reading